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Abstract

The temporal instability behavior of a viscoelastic liquid jet in the wind-induced regime with axisymmetric and asym-
metric disturbances moving in an inviscid gaseous environment is investigated theoretically. The corresponding dispersion
relation between the wave growth rate and the wavenumber is derived. The linear instability analysis shows that viscoelas-
tic liquid jets are more unstable than their Newtonian counterparts, and less unstable than their inviscid counterparts, for
both axisymmetric and asymmetric disturbances, respectively. The instability behavior of viscoelastic jets is influenced by
the interaction of liquid viscosity and elasticity, in which the viscosity tends to dampen the instability, whereas the elasticity
results in an enhancement of instability. Relatively, the effect of the ratio of deformation retardation to stress relaxation
time on the instability of viscoelastic jets is weak. It is found that the liquid Weber number is a key measure that controls
the viscoelastic jet instability behavior. At small Weber number, the axisymmetric disturbance dominates the instability of
viscoelastic jets, i.e., the growth rate of an axisymmetric disturbance exceeds that of asymmetric disturbances. When the
Weber number increases, both the growth rate and the instability range of disturbances increase drastically. The asymp-
totic analysis shows that at large Weber number, more asymmetric disturbance modes become unstable, and the growth
rate of each asymmetric disturbance mode approaches that of the axisymmetric disturbance. Therefore, the asymmetric
disturbances are more dangerous than that of axisymmetric disturbances for a viscoelastic jet at large Weber numbers.
Similar to the liquid Weber number, the ratio of gas to liquid density is another key measure that affects the viscoelastic
jet instability behavior substantially.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Breakup of a liquid jet into droplets has been involved in many practical applications such as in diesel
engines, gas turbine engines, liquid rocket engines, oil burners, spray coating process, plastics manufacture,
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metal powder production, lubrication, and so on. Therefore, it is of interest and importance to understand the
mechanisms of instability and breakup of liquid jets, since the efficiency and quality of production is strongly
dependent on these mechanisms.

The capillary instability of liquid jets has been the subject of numerous studies since 19th century. Rayleigh
(1878, 1879) considered the capillary stability of a cylinder of an inviscid fluid, and he also discussed the case
of a viscous liquid jet without inertia (Rayleigh, 1892). Weber (1931) obtained the complete linear solution for
a viscous liquid jet under surface tension forces in which he also included the action of an inviscid atmosphere.
Since then, more experimental and theoretical investigations on mechanisms of liquid jet instability have been
performed by Middleman (1965), Yuen (1968), Kroesser and Middleman (1969), Goedde and Yuen (1970),
McCarthy and Molloy (1974), Bogy (1979), and Chigier and Reitz (1996), and different theories have been
proposed to explain the instability behavior. The theory of aerodynamic interaction between the liquid jet
and the ambient gas assumes that the instability is due to aerodynamic interaction between the liquid and
the ambient gas, which induces unstable wave growth on the liquid surface. The growth of these unstable
waves eventually breaks up the liquid jet into ligaments, and then small drops (Li, 1995). Reitz and Bracco
(1982) found that the theory of aerodynamic interaction leading to surface wave growth is compatible with
their measurements for a given nozzle. Consequently, the effects of aerodynamic interaction on the instability
behavior have been explored in great detail, and the interfacial pressure fluctuations have been identified as the
vehicle for the development of the unstable wave growth on the jet surface (Lin and Kang, 1987; Zhou and
Lin, 1992; Lian and Reitz, 1993).

So far, considerable literature is available on the liquid jet instability (Giffen and Muraszew, 1953; Batch-
elor and Gill, 1962; Grant and Middleman, 1966; Meister and Scheele, 1969; Phinney, 1973), which is very
helpful to understand the mechanisms of the instability and breakup of liquid jets for Newtonian fluids. How-
ever, things are more difficult for viscoelastic jets due to the differences in liquid behavior (Darby, 1976;
Schowalter, 1978; Yarin, 1993). On the other hand, in the studies of jet instability, it is regarded that axisym-
metric disturbances are always more detrimental than asymmetric ones (Sterling and Sleicher, 1975; Lin and
Lian, 1990; Lin and Ibrahim, 1990; Brenn et al., 2000; Liu and Liu, 2006). As a result, most of the investiga-
tions are focused on the axisymmetric instability of liquid jets. It is therefore that there is a need to investigate
the instability characteristics of viscoelastic liquid jets with asymmetric disturbances.

The objective of the present paper is to extend the work on Newtonian jets done by Li (1995), i.e., to inves-
tigate the mechanisms of temporal instability of viscoelastic liquid jets with both axisymmetric and asymmetric
disturbances, and to explore the differences between the instabilities of axisymmetric and asymmetric distur-
bances, concentrating on the wind-induced regime. It is hoped that the present work can provide a good foun-
dation for further investigations of the instability and breakup of viscoelastic liquid jets. Hence, in the
following sections the dispersion relation between the growth rate and the wavenumber for a viscoelastic
liquid jet with three-dimensional disturbances are derived in detail. Then, the effects of various parameters
on the instability behavior are studied. Finally, a number of quantitative conclusions on the instability behav-
ior of viscoelastic jets with both axisymmetric and asymmetric disturbances are summarized.
2. Theory

Consider a cylindrical jet of viscoelastic liquid of density q, surface tension r, and radius a moving at veloc-
ity U through an inviscid gas of density qg. The governing equations are written in a cylindrical coordinate
system for convenience. The coordinates are chosen such that the z-axis is parallel to the moving direction
of the liquid jet flow, the r-axis is normal to the liquid jet with its origin located on the jet axis, and the h-axis
is in the azimuthal direction.
2.1. Liquid phase velocity and pressure distribution

The governing equations of the liquid motion in a jet are the conservation laws of mass and momentum, as
given below:
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where t is the time, v is the liquid velocity vector, g is the gravitational acceleration vector, and p is the total
stress tensor of the liquid, which is given by
p ¼ pdþ s; ð3Þ
where p is the pressure of the liquid due to the disturbance, s is the extra stress tensor of the liquid, and d is the
unit tensor.

A corotational Oldroyd eight-constant model is used for describing the viscoelastic liquid state (Bird et al.,
1977; Park and Lee, 1995; Goren and Gottlieb, 1982; Liu et al., 1998). The following linearized equations are
obtained after neglecting the nonlinear terms and gravitational effects:
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where _c is the strain tensor, g0 is the zero shear viscosity, k1 is the stress relaxation time, and k2 is the defor-
mation retardation time.

As the jet issues from the nozzle, the jet surface is always subjected to disturbances. The equation for the jet
surface disturbed by a small disturbance is expressed as follows:
r ¼ aþ n; ð7Þ
where r = a is the equilibrium position of the jet surface, i.e., the position without disturbances, and n is the
displacement of a point on the surface.

Since we are interested in the wave motion in the liquid, we seek the solutions for the velocity vector v as
periodic functions in z and h, and complex exponential functions in t:
v ¼ VðrÞeiðkzþnhÞþat; ð8Þ
and the velocity vector v has three components, that is:
vr ¼ V rðrÞeiðkzþnhÞþat; ð9Þ
vh ¼ V hðrÞeiðkzþnhÞþat; ð10Þ
vz ¼ V zðrÞeiðkzþnhÞþat; ð11Þ
where a is a complex frequency (a = ar + iai, where ar represents the wave growth rate of the disturbance, ai is
2p times the disturbance frequency, and �ai/k is the wave propagation velocity of the disturbance in the direc-
tion of the liquid flow), k is real, representing the wavenumber of the disturbance in z direction, and n is an
integer, representing the disturbance mode.

It is n in the above expression that introduces the effects of the asymmetric disturbances. It should be noted
that when n = 0, the interfacial waves on the jet surface correspond to symmetrical jet surface deformations
with successive contractions and expansions in radial direction, and are called varicose waves. A schematic
diagram of a liquid jet for the varicose disturbances is shown in Fig. 1a. When n = 1, the interfacial waves
on the jet surface correspond to the jet surface deformation in which the cross section remains circular but
is displaced relative to the jet axis, and are referred to sinuous waves. A schematic diagram of a liquid jet
for the sinuous disturbances is shown in Fig. 1b. When n = 2, the jet develops elliptical cross sections. An
ellipse with a horizontal major axis is transformed successively into an ellipse with a vertical major axis,
and vice versa. When n P 3, sinusoidal surface deformations occur in both the axial and azimuthal directions,



Z

r

a

0

-a

Z

r

a

0

-a

Fig. 1. Schematic diagram of a liquid jet for the laboratory-fixed coordinate system (r,h,z) for (a) the varicose disturbances (n = 0) and (b)
the sinuous disturbances (n = 1).
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and become more and more complicated as unstable waves with larger values of n set in and start to grow on
the jet surface.

Thus, the stress tensor s, the strain tensor _c, the pressure p, and the interface displacement n are periodic
functions in z and h, and exponential functions in t, i.e.,
s ¼ TðrÞeiðkzþnhÞþat; ð12Þ
_c ¼ _CðrÞeiðkzþnhÞþat; ð13Þ
p ¼ P ðrÞeiðkzþnhÞþat; ð14Þ
n ¼ n0eiðkzþnhÞþat; ð15Þ
where n0 is the initial amplitude of the disturbance, which is thought to be much smaller than the radius a of
the jet in the linear stability theory.

Differentiating Eqs. (12) and (13), and substituting the results into Eq. (6) results in
s ¼ �gðaÞ _c; ð16Þ
where
gðaÞ ¼ g0

1þ k2ðaþ ikUÞ
1þ k1ðaþ ikUÞ

: ð17Þ
Substituting Eq. (16) into Eq. (5), and expressing the governing equations and the velocity vector in suitable
component forms, the following scalar continuity and momentum equations are obtained in cylindrical
coordinates,
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The flow field solutions of the above governing equations have to satisfy the kinematic and dynamic boundary
conditions at the gas–liquid interface, which can be taken to be r = a (the first order approximation for a small
displacement of the interface due to the disturbance). Thus, in mathematical form, the kinematic boundary
condition requires that
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and the dynamic boundary conditions require that
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prr � pg;rr þ pr ¼ 0; r ¼ a; ð25Þ
where subscript ‘g’ denotes the gas phase, prr is the liquid normal stress, pg,rr is the gas normal stress, and pr is
the pressure induced by the surface tension. Moreover, the velocity components along the jet axis, i.e., at r = 0,
must be finite.

Solving differential Eqs. (18)–(21) and applying the boundary conditions (22)–(24), the final forms of the
pressure and velocity profiles in the liquid read:
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where In(kr) is the nth order modified Bessel function of the first kind, and
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2.2. Gas phase velocity and pressure distribution

In the present analysis the gas around the moving liquid jet is assumed to be inviscid, and it moves at a
velocity U g in the same direction as the flow of the liquid jet. Similar to the liquid phase, the governing equa-
tions for the gas phase are expressed as follows:
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where Eq. (35) is the gas phase continuity equation, and Eqs. (36)–(38) are the gas phase momentum equa-
tions. The boundary conditions for the gas phase are regarded as
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The same calculation as for the liquid phase leads to the final form of the profiles of the pressure and three
velocity components in the gas phase.
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where Kn(kr) is the nth order modified Bessel function of the second kind.
2.3. Dispersion relation

The normal stress in the liquid jet can be obtained from the corresponding equations of the velocity and
pressure profiles.
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The normal stress in the gas is obtained from pg,rr = pg
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The pressure induced by the surface tension to the first order in n is expressed as
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Substituting the expressions found for prr, pg,rr, and pr into the normal stress boundary condition (25) for
r = a yields the following dispersion relation:
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Eq. (48) relates the wave growth rate a to the wavenumber k, but its solution is complicated by the fact that the
parameter l is still a function of a.

When k1 = k2 = 0, the jet of a viscoelastic fluid is transformed into that of a Newtonian fluid (at this con-
dition g0 = l, where l = mq is the dynamic viscosity of the Newtonian fluid, and m is the kinematic viscosity of
the Newtonian fluid), and the dispersion relation (48) reduces to the results for a Newtonian fluid:
ðaþ ikUÞ2 þ 2mk2 I 00nðkaÞ
InðkaÞ þ

C3

C1

2

ka
la

I 00nðlaÞ
InðlaÞ

� I 0nðlaÞ
InðlaÞ

� �
I 0nðkaÞ
InðkaÞ �

C4

C1

2kl

l2 þ k2

I 00nðlaÞ
I 0nðlaÞ

I 0nðkaÞ
InðkaÞ

� �
ðaþ ikUÞ

� C2

C1

qg

q
l2 � k2

l2 þ k2

KnðkaÞ
K 0nðkaÞ

I 0nðkaÞ
InðkaÞ ðaþ ikU gÞ2 ¼

C2

C1

rk
qa2

l2 � k2

l2 þ k2
ð1� k2a2 � n2Þ I

0
nðkaÞ

InðkaÞ : ð49Þ
When the liquid viscosity vanishes, the jet of a Newtonian fluid is transformed into that of an inviscid fluid,
and the dispersion relation (49) reduces to the results for an inviscid fluid.
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When n = 0, the above three-dimensional dispersion relations can reduce to the corresponding two-dimen-
sional (axisymmetric) forms, respectively, for viscoelastic fluid (Brenn et al., 2000), Newtonian one (Weber,
1931), and inviscid one (Rayleigh, 1879).

From the above derivations, it is seen that the three-dimensional viscoelastic liquid jet dispersion relation
recovers the dispersion relations for the jets of the three-dimensional Newtonian and inviscid fluids as well as
two-dimensional analogs, thus confirming the validity of the three-dimensional viscoelastic linear solution.
The following work analyzes the three-dimensional instability of the viscoelastic liquid jets by using the dis-
persion relation (48).
3. Results

For convenience, the above dispersion relation of a viscoelastic liquid jet, Eq. (48), can be expressed in non-
dimensional form as
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and X1 ¼ Xþ iKðWeÞ1=2, X2 ¼ Xþ iK eU ðWeÞ1=2, X ¼ Xr þ iðWeÞ1=2Xi, Xr ¼ ar=ðr=qa3Þ1=2 is the non-dimen-
sional growth rate, Xi ¼ ai=ðU=aÞ is the non-dimensional disturbance frequency, K = ka is the non-dimen-
sional (real) wavenumber, L ¼ la; ~q ¼ qg=q is the ratio of gas density to liquid density, eU ¼ U g=U is the
ratio of gas velocity to liquid velocity, ~k ¼ k2=k1 is the ratio of deformation retardation time to stress relax-
ation time (the time constant ratio for short). The liquid Weber number is defined as We ¼ qU 2a=r, which
represents the ratio of inertial force to surface tension force. The Reynolds number is defined as
Re ¼ qUa=g0, which expresses the ratio of inertial force to viscous force, the Ohnesorge number is defined
as Z = g0/(qra)1/2, which denotes the ratio of viscous force to surface tension force. The elasticity number
is defined as El = k1g0/qa2, which represents a relationship between viscous effect and elastic effect in the li-
quid. The constant C in front of the aerodynamic term in the dispersion relation is introduced to consider
the effect of gas viscous due to Sterling and Sleicher (1975), and Gordillo and Perez-Saborid (2005). According
to Sterling and Sleicher (1975), the value of the constant C = 0.175.

The instability of liquid jets corresponds to positive values of the disturbance growth rate (i.e., ar > 0 or
Xr > 0), and the growth rate of disturbances on liquid jets can be obtained through solving the above corre-
sponding dispersion relations by using Muller’s secant method (1956).

Gordon et al. (1973) showed the dispersion relation for a jet of an aqueous 0.05% Separan AP30 solution.
Separan is a polyacrylamide frequently used in experiments on viscoelastic jets. Its ratio of deformation retar-
dation time to stress relaxation time is ~k ¼ 0:1. To make our concentration on the wind-induced regime and
for the general case, the non-dimensional wave growth rate Xr of disturbances on different liquid jets versus
the non-dimensional wavenumber K at Z = 0.1, Re = 2236, We = 50 000, El = 0.1, ~k ¼ 0:1; ~q ¼ 0:001, and
U g ¼ 0 is calculated and shown in Fig. 2a for n = 0 and n = 2, and in Fig. 2b for n = 1 and n = 3. The asym-
metric (three-dimensional) results are obtained from the dispersion relations with n = 1, 2, and 3, and the axi-
symmetric (two-dimensional) results are attained from the dispersion relations with n = 0. It should be noted
that any value of n other than zero would correspond to an asymmetric disturbance mode and thus cause the
disturbance to be three-dimensional.

The cutoff wavenumber is the value where the growth rate curve crosses the wavenumber axis in the plot of
wave growth rate versus wavenumber, and it is obtained from the corresponding dispersion relations by set-
ting ar = 0 or Xr = 0. From inspection of Fig. 2, it is found that the most obvious difference between axisym-
metric and asymmetric disturbances is that, in addition to an upper cutoff wavenumber, asymmetric
disturbances exhibit a lower cutoff wavenumber as well. Below the lower cutoff wavenumber or above the
upper cutoff wavenumber, the growth rates are negative. Therefore, the liquid jet is stable. Only those distur-
bances with wavenumbers between the lower and upper cutoff wavenumbers are unstable. In this sense, the
lower cutoff wavenumber for axisymmetric disturbances may also be regarded to exist, as zero, corresponding
to disturbances of infinitely long wavelength. It is further discovered that except for n = 1, a non-zero lower
cutoff wavenumber exists for all other asymmetric disturbances (n > 1), and increases with n, whereas the
upper cutoff wavenumber decreases with n. This is not only the characteristic of asymmetric disturbances
in the instability of viscoelastic liquid jets, but also the characteristic of asymmetric disturbances in the insta-
bility of Newtonian and inviscid liquid jets. Similar results were reported by Li (1995) in his studies on the
instability of Newtonian liquid jets. In addition, it is also evident from Fig. 2 that for the given flow condition
the maximum growth rate and the corresponding dominant wavenumber decrease as the value of n increases.
Therefore, when n is greater than some value for a given condition, the growth rates become negative and the
corresponding asymmetric disturbances are stable. For the condition in Fig. 2, the asymmetric disturbances
are stable at n > 3 for the jets of three types of fluids. It is also discovered that for the same liquid Weber num-
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Fig. 2. Wave growth rate Xr of axisymmetric and asymmetric disturbances on different liquid jets versus wavenumber K at Z = 0.1,
Re = 2236, We = 50000, El = 0.1, ~k ¼ 0:1; ~q ¼ 0:001, and U g ¼ 0 for (a) n = 0 and n = 2, and (b) n = 1 and n = 3.
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ber the unstable wavenumber range is almost identical for each corresponding disturbance mode on jets of
viscoelastic, Newtonian, and inviscid fluids.

From inspection of the curve shapes of wave growth rate of different disturbances in Fig. 2, it is seen that
for relatively small wavenumbers, the axisymmetric growth rate curve is convex, and the asymmetric growth
rate curves are always concave. Three types of fluids demonstrate the same feature. In addition, Fig. 2 also
shows the effects of the value of n on the growth rate of disturbances on a different liquid jets. It is observed
from this figure that the maximum growth rate of the axisymmetric disturbance exceeds that of the asymmetric
disturbances. It is further noticed that the asymmetric disturbance corresponding to n = 1 possesses higher
growth rate than that with n = 2, and the growth rate of the asymmetric disturbance with n = 2 is higher than
that of the asymmetric disturbance with n = 3. Similar observations were reported by Yang (1992) and Avital
(1995) in their investigations on the asymmetric instability of Newtonian liquid jets. Goldin et al. (1969) also
reached a similar conclusion in their instability investigations of liquid jets. Therefore, it is concluded that for
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the given set of parameters, axisymmetric disturbance is more detrimental than asymmetric ones for viscoelas-
tic, Newtonian, and inviscid liquid jets, respectively.

It is seen from inspection of Fig. 2 that for an axisymmetric disturbance (n = 0), the growth rate of wave on
a viscoelastic liquid jet lies above that corresponding to a Newtonian fluid and below that corresponding to an
inviscid fluid. Further inspection shows that for the asymmetric disturbances (n 5 0), this same phenomenon
holds true. Hence, this phenomenon is independent of the value of n. Therefore, it is concluded that, in the
range of flow parameters associated with the results in Fig. 2, a jet of such a viscoelastic fluid is more unstable
than a Newtonian liquid jet, and less unstable than an inviscid jet. Similar results were reported by Goldin
et al. (1969) in their studies on the axisymmetric instability of viscoelastic fluid jets. It is inferred that any
experimentally observed difference in the instability behavior must, therefore, be due to nonlinear phenomena.
Goldin et al. (1969) also reached a similar conclusion in their instability investigations of liquid jets.

It is known that the Ohnesorge number Z and the Reynolds number Re are related to the liquid Weber
number We by We = Z2Re2. When the jet velocity increases the jet inertia force increases, resulting in increase
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Fig. 3. Effects of the jet velocity on wave growth rate Xr of axisymmetric and asymmetric disturbances on viscoelastic liquid jets versus
wavenumber K at Z = 0.1, El = 0.1, ~k ¼ 0:1; ~q ¼ 0:001, and U g ¼ 0 for (a) n = 0, n = 2, and n = 4, and (b) n = 1, n = 3, and n = 5.
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in the corresponding Reynolds number Re and Weber number We. If the jet velocity is doubled from the given
conditions in Fig. 2, the corresponding Reynolds number increases from Re = 2236 to Re = 4472 and the
Weber number from We = 50 000 to We = 200000. The corresponding result, i.e., the effect of the jet velocity
(the aerodynamic effect) on wave growth rate of axisymmetric and asymmetric disturbances on viscoelastic
liquid jets versus wavenumber K at Z = 0.1, El = 0.1, ~k ¼ 0:1; ~q ¼ 0:001, and U g ¼ 0 is shown in Fig. 3a
for n = 0, n = 2, and n = 4, and in Fig. 3b for n = 1, n = 3, and n = 5. From inspection of Fig. 3, it is obvious
that as the jet velocity increases, both the growth rate and the instability range increase substantially. There-
fore, it is concluded that the aerodynamic effect is the source of the occurrence and growth of the instability on
viscoelastic liquid jets, and it strongly influences the instability behavior.

It can be seen from Fig. 3 that the trend continues that the growth rate of the axisymmetric disturbance
exceeds that of the asymmetric disturbances and the growth rate of the asymmetric disturbances decreases
when the value of n increases. However, the curves of growth rates of all the disturbance modes become
very close due to the increase in jet velocity. The maximum growth rate and the corresponding dominant
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Fig. 4. Effects of the jet surface tension on wave growth rate Xr of axisymmetric and asymmetric disturbances on viscoelastic liquid jets
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wavenumber for the given conditions in Fig. 3 reduce little with the value of n. This indicates that as the jet
velocity increases, the effects of asymmetric disturbance modes on jet breakup enhance drastically, and more
asymmetric disturbance modes with large values of n become unstable. In Fig. 3, the disturbance mode effects
for n = 4 and n = 5 are added, and those for n > 5 are ignored. Since all these disturbance modes appear on the
liquid jet surface during the jet breakup process, the jet breakup process becomes more complicated, which
was observed in the experiments by Hoyt and Taylor (1977), and by Lefebvre (1989).

On the other hand, when the jet surface tension decreases the jet surface tension force decreases, resulting in
increases in the corresponding Ohnesorge number Z and Weber number We. For example, if the jet surface
tension is reduced to one fourth from the given conditions in Fig. 2, the corresponding Ohnesorge number Z

increases from Z = 0.1 to Z = 0.2 and the Weber number increases from We = 50000 to We = 200000. Fig. 4
shows the effects of the jet surface tension on wave growth rate of axisymmetric and asymmetric disturbances
on viscoelastic liquid jets versus wavenumber K at Re = 2236, El = 0.1, ~k ¼ 0:1; ~q ¼ 0:001, and U g ¼ 0 for (a)
n = 0, n = 2, and n = 4, and (b) n = 1, n = 3, and n = 5. From inspection of Fig. 4, it can be seen that the effect
of jet surface tension on the non-dimensional growth rate is similar to that of the jet velocity. As the jet surface
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tension decreases, both the growth rate and the instability range increase substantially. Therefore, it is con-
cluded that the effect of the jet surface tension resists the occurrence and development of the instability on
viscoelastic liquid jets, and it strongly affects the instability behavior.

It also can be seen from Fig. 4 that the growth rate of the axisymmetric disturbance exceeds that of the
asymmetric disturbances and the growth rate of the asymmetric disturbances becomes smaller when the value
of n increases. Furthermore, the curves of wave growth rate of all the disturbance modes become very close
due to the reduced jet surface tension. The maximum growth rate and the corresponding dominant wavenum-
ber for the given conditions in Fig. 4 changes very little with the value of n. This indicates that as the jet surface
tension decreases, the effect of asymmetric disturbance modes on jet breakup increases drastically, and more
asymmetric disturbance modes with large values of n become unstable. In Fig. 4, the effects of the disturbance
modes for n = 4 and n = 5 are added, and the results of the disturbance modes for n > 5 are ignored.

When the jet viscosity is reduced, the corresponding Ohnesorge number Z decreases and the jet Reynolds
number Re increases at the same level, with the jet Weber number We unchanged based on their relation.
Reducing the jet viscosity to one tenth of the given conditions in Fig. 2 causes the corresponding Ohnesorge
number Z to decrease from Z = 0.1 to Z = 0.01 and the Reynolds number to increase from Re = 2236 to
Re = 22360, whereas the Weber number is still kept at We = 50000. The corresponding results of the effect
of the liquid viscosity on wave growth rate Xr of axisymmetric and asymmetric disturbances on viscoelastic
liquid jets versus wavenumber K at We = 50000, El = 0.1, ~k ¼ 0:1; ~q ¼ 0:001, and U g ¼ 0 are shown in
Fig. 5a for n = 0 and n = 2, and in Fig. 5b for n = 1 and n = 3, respectively. From inspection of Fig. 5, it
is clear that as the jet viscosity decreases, the growth rates of both axisymmetric and asymmetric disturbances
increase. This implies that the jet viscosity can dampen the instability of viscoelastic liquid jets. The maximum
growth rate and the dominant wavenumber decrease when the value of n increases. This indicates that asym-
metric disturbance effects on the jet instability weaken with n.

From further investigation of Figs. 3–5, it is found that these figures can demonstrate the effects of the jet
Weber number We, Reynolds number Re and Ohnesorge number Z on the axisymmetric and asymmetric dis-
turbances of viscoelastic jets. For the same Weber number as shown in Fig. 5, the growth rates of axisymmet-
ric disturbance and each asymmetric disturbance mode change slightly, but the instability ranges do not
change with Reynolds number and Ohnesorge number. However, both the growth rates and the instability
ranges of axisymmetric disturbance and each asymmetric disturbance mode vary drastically with Weber
number for the same Reynolds number shown in Fig. 4 or the same Ohnesorge number shown in Fig. 3.
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In addition, it is obvious from Figs. 3 and 4 that the instability ranges of axisymmetric disturbance and each
asymmetric disturbance mode are almost identical, and their growth rate amplitudes are of the same order for
each corresponding Weber number. It is therefore concluded that the jet Weber number is a key measure that
controls the viscoelastic jet instability behavior. It is clear that any parameters that constitute the jet Weber
number would influence the jet instability behavior significantly. For example, it is observed from Figs. 3–5
that the effects of jet velocity and surface tension on the wave growth rate of disturbances are much stronger
than that of jet viscosity. As a result, in industrial applications such as in fuel sprays in diesel engines, it is
extremely difficult to enhance the fuel spray instability through reducing the diesel fuel surface tension.
Instead, people increase fuel injection velocity through raising the injection pressure to obtain better fuel
atomization and sprays in diesel engines.

For an asymptotic analysis, the Weber number is increased from We = 50000 to We = 500000, as shown in
Fig. 6. It can be observed from this figure that all the growth rate curves coincide with each other in most of
disturbance range, including the asymmetric mode of n = 8. However, it should be noted that at small wave-
number, the growth rate of the sinuous disturbances (n = 1) is greater than that of the varicose disturbances
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(n = 0). Therefore, it is concluded that for a viscoelastic jet the asymmetric disturbances are more dangerous
than that of axisymmetric disturbances at very large Weber numbers.

In order to explore the effects of the liquid elasticity through the elasticity number El on the evolution of the
instability of viscoelastic liquid jets, the elasticity number is reduced from 0.1 to 0.01, while the other param-
eters are kept same. The corresponding results are shown in Fig. 7 at Z = 0.1, Re = 2236, We = 50000,
~k ¼ 0:1; ~q ¼ 0:001, and U g ¼ 0 (a) for n = 0 and n = 2, and (b) for n = 1 and n = 3. It is observed from
Fig. 7 that for axisymmetric disturbance and each asymmetric disturbance mode, the wave growth rates
decrease as the liquid elasticity is reduced. The wave growth rate curve of disturbances on viscoelastic
jets approaches that of the corresponding Newtonian jet. When the elasticity number is reduced to zero,
the growth rate curve of viscoelastic jet is transformed into that of Newtonian one, since the fluid has
become Newtonian at this condition. Therefore, it is concluded that the liquid elasticity tends to enhance
the wave growth rate of disturbances on viscoelastic liquid jets. Thus, it is further confirmed that the linearized
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computations predict viscoelastic liquid jets to be more unstable than Newtonian ones. In addition, the cutoff
wavenumber stays same as the elasticity number varies.

The effects of the ratio of deformation retardation to stress relaxation time, ~k, on wave growth rate are pre-
sented in Fig. 8 at Z = 0.1, Re = 2236, We = 50 000, El = 0.1, ~q ¼ 0:001, and U g ¼ 0 for (a) n = 0 and n = 2,
and (b) n = 1 and n = 3, respectively. In this figure, the time constant ratio �k increases from 0.1 to 0.5. It is
noticed from Fig. 8 that for axisymmetric disturbance and each asymmetric disturbance mode, the wave
growth rate of disturbances decreases as the time constant ratio increases, but the cutoff wavenumber does
not change with the time constant ratio.

The effects of the gas to liquid density ratio are examined in Fig. 9a for n = 0, n = 2, and n = 4, and Fig. 9b
for n = 1, n = 3, and n = 5 at Z = 0.1, Re = 2236, We = 50000, El = 0.1, ~k ¼ 0:1, and U g ¼ 0. From inspec-
tion of Fig. 9, it is observed that the effects of the gas to liquid density ratio on the growth rates of waves on
the viscoelastic jet are significant for both axisymmetric and asymmetric disturbances, similar to the effects of
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the Weber number. When the gas to liquid density ratio is small, the wave growth rate of the axisymmetric
disturbance on the viscoelastic jet exceeds that of the asymmetric disturbances and the growth rate of asym-
metric disturbances becomes smaller when the value of n increases, indicating the axisymmetric disturbance is
more detrimental. When the gas to liquid density ratio increases, both the growth rate and the instability range
of disturbances increase drastically, more asymmetric disturbance modes with large values of n become unsta-
ble, and the growth rate of each asymmetric disturbance mode approaches that of the axisymmetric distur-
bance. In Fig. 9, as the gas to liquid density ratio increases from 0.001 to 0.002, we can see that the effects
of the disturbance modes for n = 4 and n = 5 are added, and the effects of the disturbance modes for n > 5
are ignored, indicating that at large gas to liquid density ratio, the asymmetric disturbances are gradually
becoming more dangerous. Hence, it is concluded that the gas to liquid density ratio is another key measure
that controls the viscoelastic jet instability behavior.

In addition, it can be seen from Fig. 9 that the liquid Weber number is unchanged as the gas to liquid den-
sity ratio increases, which implies that there is an increase in the gas density qg. Therefore, it is concluded that
the high ambient gas density enhances the instability of viscoelastic liquid jets for both axisymmetric and
asymmetric disturbances. This agrees well with the practice that people improve the fuel sprays through
increasing the gas density in diesel engine cylinders.

4. Conclusions

In this paper, the temporal instability behavior of a viscoelastic liquid jet in the wind-induced regime with
axisymmetric and asymmetric disturbances moving in an inviscid gaseous environment is investigated theoret-
ically. As a result of the linear analysis described above, the following conclusions may be drawn.

(1) In the investigated regime, the growth rate of wave on a viscoelastic liquid jet is larger than that of a
Newtonian one and smaller than that of an inviscid one for axisymmetric disturbance, and for each
asymmetric disturbance mode, this same phenomenon holds true, i.e., this phenomenon is independent
of the values of n, indicating that viscoelastic liquid jets are more unstable than their Newtonian coun-
terparts, and less unstable than their inviscid counterparts for both axisymmetric and asymmetric
disturbances.

(2) The liquid Weber number is a key measure that controls the viscoelastic jet instability behavior. At small
Weber number, the axisymmetric disturbance dominates the instability of viscoelastic jets, i.e., the
growth rate of an axisymmetric disturbance exceeds that of the asymmetric disturbances and the growth
rate of asymmetric disturbances decreases as the value of n increases. When the Weber number increases,
both the growth rate and the instability range of disturbances increase drastically. The asymptotic anal-
ysis shows that at large liquid Weber number, more asymmetric disturbance modes with large values of n

become unstable, and the growth rate of each asymmetric disturbance mode approaches that of the axi-
symmetric disturbance in most of disturbance range. In addition, at small wavenumber, the growth rate
of the sinuous disturbances (n = 1) is greater than that of the varicose disturbances (n = 0). Therefore,
the asymmetric disturbances are more dangerous than that of the axisymmetric disturbance for visco-
elastic jets at large Weber numbers.

(3) Similar to the liquid Weber number, the ratio of gas to liquid density is another key measure that con-
trols the viscoelastic jet instability behavior. When the gas to liquid density ratio is small, the wave
growth rate of axisymmetric disturbance is higher than that of asymmetric disturbances, indicating
the axisymmetric disturbance is more detrimental. When the gas to liquid density ratio increases, both
the growth rate and the instability range of disturbances increase drastically, more asymmetric distur-
bance modes with large values of n become unstable, and the growth rate of each asymmetric distur-
bance mode approaches that of the axisymmetric disturbance. Therefore, the effects of the asymmetric
disturbances become stronger as the gas to liquid density ratio increases.

(4) The surface tension resists the development of instability on viscoelastic liquid jets with both axisymmet-
ric and asymmetric disturbances, i.e., they smooth out the disturbances on the interface between the
liquid and the gas, whereas the aerodynamic effect enhances the instability. These two parameters influ-
ence the instability behavior of viscoelastic liquid jets greatly.
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(5) For viscoelastic liquid jets the instability behavior is influenced by the interaction of the liquid viscosity
and the liquid elasticity, in which the viscosity tends to damp the instability, whereas the elasticity results
in an enhancement of instability. However, the viscosity or the elasticity does not change the instability
range, indicating that the effect of the viscosity or the elasticity on the instability of viscoelastic liquid jets
is weak. In addition, the growth rates of disturbances decrease with the ratio of deformation retardation
to stress relaxation time in a relatively weak manner.

Considerably more work is still needed before the complex behavior of viscoelastic fluid jets will be fully
understood, and it is hoped that the present work can be a contribution for further investigations of the insta-
bility and breakup of viscoelastic liquid jets. At the present time, there is still a lack of nonlinear theoretical
results and experimental data in this area. Future work should therefore be directed towards the consideration
of nonlinear effects on the destabilization behavior of viscoelastic liquid jets, and corresponding experiments
to validate the theoretical results.
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